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Fig. 2. Normalized input impedance of the exponentially tapered
transmission line for various impedance t1ansformation ratios (Z:/Z1)
and electrical length (@). The high impedance end of the taper matches
the system impedance (Z: =Z1).
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Fig. 3. Enlarged view of a portion of Fig. 2 showing the behavior of the
normalized input impedance for tapers up to several wavelengths long.
The impedance transformation ratio Z:/Z:1 = 10,

At an electrical length of approximately 200° the input impedance
becomes real. For longer electrical lengths the impedance follows a
small spiral, becoming real again at one wavelength. Further increase
in length causes the impedance to follow a smaller spiral, and each
additional half-wavelength introduces another even smaller spiral,
the impedance becoming real at each multiple of a half-wavelength.

If it is realized that, for a given physical length of line, the elec-
trical length is proportional to the frequency, the broad-band proper-
ties of the exponential line become clear. The input impedance re-
mains essentially constant above the frequency at which the taper
length is appreciably over one-half wavelength. It should be pointed
out that this broad-band characteristic applies to the transformation
of real loads only. However, the behavior of the input impedance as
a function of frequency may be readily determined for any other
load by applying (8)~(13). ]

The less-well-known narrow-band properties of the exponentially
tapered line are also shown in Fig. 2. For example, a transistor whose
input impedance is known to be 10 + j15 Q requires a conjugate
matching impedance, normalized to 50 £ of 0.2 — j0.3. Finding this
point on Fig. 2 reveals that this impedance is presented by an expo-
nentially tapered line with an impedance transformation ratio of
5:1 and an electrical lengih of 60°. In this case, the electrical length
is considerably shorter than a quarter-wavelength. Hence, the
¢ ‘ponentially tapered line is also an attractive vehicle for narrow-
bend applications that require capacitive impedance transformations
where small physical size is important.

CONCLUSIONS

Correction and modification of the existing closed form solution for
the reflection coefficient along an exponentially tapered line has
permitted the computation of curves for the input impedance which

965

are normalized with respect to frequency and Z,. The findings clearly
demonstrate both the broad-band and narrow-band properties of
the tapered line. Use of the normalized graphs will aid in the desiyn
of exponentially tapered transmission lines for practical applications.
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Transmission Characteristics of Spherical TE and TM
Modes in Conical Waveguides

M. S. NARASIMHAN, memBER, 18EE, AND K. S. BALA-
SUBRAMANYA, MEMBER, IEEE

Abstract——The transmission properties of sphericai TE and TM
modes in a perfectly conducting conical waveguide are treated in
detail. To start with, an analytically simple and highly accurate
digital~computer based iterative algorithm has been employed to
evaluate the eigenvalues associated with the spherical TE and TM
modes within the guide irrespective of the flare angle (2«0) of the
conical waveguide (¢ < 2ap < 360°). Subsequently, explicit expres~
sions for the attenuation constant, phase constant, phase velocity,
and wave impedance are obtained for the spherical modes trans-
mitted within the guide. Accurate eigenvalues obtained numerically
are used to study the variation of attenuation constant, phase con-
stant, phase velocity, and wave impedance as a function of the radial
distance from the apex with o as a parameter. Measured data on
the phase constant of a conical waveguide for the TE;; mode have
been compared with the analytical results obtained by calculation
and an excellent agreement between the two justifies the validity
of the analysis presented. Finally, a study of the phase coherence
between the dominant spherical TE and TM modes within the guide
is presented which may be fruitfully employed in the design of dual-
mode conical waveguides.

1. INTRODUCTION

In several microwave systems encountered in such application as
earth stations for satellite communications, microwave radio-relay
links, millimeter-wave communications, and in the launching of
Gaussian modes in beam waveguides [17], conical tapers and conical
waveguides are frequently employed. Conical waveguides and tapers
encountered in the systems just mentioned generate higher order
modes, however small their amplitudes may be. Further, there has
been considerable interest in the recent past in techniques which
require controlled excitation of higher order modes combined with
the dominant mode, as for example dual or multimoding in conical
waveguides. One application of such a multimode waveguide will
be in low-noise antennas for satellite communications [2].

All applications of conical waveguides mentioned previously
involve generation and transmission of spherical TE and TM modes
of different orders. Further, a common feature of dual or multi-
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moding techniques in a conical waveguide is the necessity for main-
taining a high degree of phase coherence among the various modes.
In order to design such systems and predict how frequency, tem-
perature, and structural changes influence fransmission character-
isties it is necessary to study, in detail, variation of phase constant,
attenuation constant, and wave impedance for different modes with
radial distance ih the conical waveguide.

In this short paper, to begin with, a novel method is devised for
accurate evaluation of the eigenvalues associated with the propagat-
ing TE and TM modes in a conical waveguide which are subse-
querntly used to study the transmission properties of the guide.
Finally, a study of phase coherence between the TE; and TMy
modes in a dual-mode conical waveguide has also been presented.

II. EIGENVALUES OF "SPHERICAL TE AND TM MODES
WITHIN THE GUIDE

The electromagnetic field components (of interest in the study of
transmission characteristics) in a perfectly conducting waveguide
of infinite extent are well known [3]. The eigenvalues associated
with the field components are given by the nth nonvanishing root of
the characteristics equations:

d/de — [P (cos 8) J—eo = 0,
[P (cos 0) Jpwa, = 0,

As mentioned previously, a systematic and detailed study of the
transmission properties of spherical modes in conical waveguides
requires the exact evaluation of the eigenvalues associated with the
type of mode under consideration. An analytically simple and highly
accurate digital-computer based iterative algorithm is described
here for evaluating the exact eigenvalues. The technique described
involves closed-form evaluation of the eigenvalues, based on an
accurate asymptotic solution for spherical wave functions associated
with modes in a conical waveguide. The eigenvalues obtained from
the asymptotic solution are close to the exact values for all flare
angles 1 < o < 180°. Hence the asymptotic solution is used to
generate the starting values for numerical évaluation of the more
exact eigenvalues with simple iterative process.

An analytically simple and sufﬁc1ently accurate asymptotic solu-
tion for the required eigenvalues is obtained by considering the
differential equation governing the H () part of the solution for the
scalar potential us™ given as follows [3]:

for TE,, . modes 1)
for TM, » modes. 2)

1 d dH
= — = () 3
Hsinodo[ o ]+s(s+l) sin’ 6 ®
where, for | cos 8| < 1,
H = AP (cos 8) + BQsm(cos 9). (3a)

The asymptotic solution F () corresponding to H (@) is obtained by
replacing sin 8 by ¢ in (3) and solving the resulting differential
equation as detailed in [4]:

F(9) = C[Jm(g8) + DNu(g6)] (4)
g = [s(s +1) ]

where

and
s = —0.5 + [0.25 + (Pmn) o) 2]t (5)

In (5) “Pms’’ and “D”’ depend on the type of radial waveguides con-
sidered. For example, in a conical waveguide, D =0 and p,.. repre-
sents the nth nonvanishing root of J,,’(z) = 0, when TE to r modes
are considered. Similarly, for TM to r modes, “pn.’’ stands for the
nth nonvanishing root of J,(x) = 0. Since the roots of the Bessel
functions of the first kind (integral order) and its derivative are
readily available [5], “s’’ can be directly computed from (5). The
eigenvalues obtained using (5) for an arbitrary flare 1 < ay < 180°
(for the TE;, or TM;, modes) are found to be close to the exact
eigenvalue. In order to obtain the exact eigenvalues an iterative
procedure is developed by considering the integral representation
for the associated Legendre functions [6]:
2\112
(;) I, (s,6) (6)

(sin ) ™

P (cos 8) = (’m«+—05)

(=1)m

where
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(s+m-+1)

11(3,0> = (8 _m+1)

2
f (cos & — cos 9)™~05 cos [z (s + 0.5) ] dz.
0

(")

For the TE,, and TM;, modes the eigenvalue equations (1) and (2)
may be reduced to the following forms! with the aid of (6):

Gy (syap) = sI(s + Lyp) — (s + 1) cos el (s,00) = 0
Ga(sy00) = I(s,00) = 0

(8a)
(8b)

where

I(s,00) = s(s +1) fao (cos z ~ cos w)'2 cos [x(s + 0.5) ] dx
0

G:(s®,0
st = g — ;_). (9)

G (s®,a0)
where ¢ = 1,2 for TE;, and TM,, modes, respectively,
G (s,a0) = sI'(s + L) — (s + 1) cos apl’ (s,a)
4+ I (s + 1,00} — cos apl (s,c9)
Gy (s,00) = I'(s,a9)

(10a)
(10b)

and

I'(s,09) = (2 —5s+1) /ao (cos £ — cos ag)12 cos [z (s + 0.5) ] dr
0 .

—s(s+1) /ao z(cos x — cos ap)12sin [z (s + 0.5) ] dzx.

In (9), s®*D represents the (k + 1)th value of “s’’ evaluated after
k successive iterations and the known asymptotlc solution for “s”
given by (5) is taken as the starting value “s.”’

IBM 370/ 155 computer system was made use of for performing
the successive iterations. The integrals I(s,ae) and I'(s,cs) were
evaluated numerically using a 24 point Gaussian quadrature formula
in a subprogram forming a part of the computer program meant for
evaluating “‘s.”” Double-precision arithmetic was used throughout
in order to obtam an accuracy of 107® while computing “s.”” The
truncation error involved in the evaluation of the mtegrals I (s,e0)
and I’ (s,a) are of the same order and is hence eliminated completely
as they appear as a ratio in evaluating the eigenvalue (9). Further,
since the starting values “s’’ (given by (5) are close to the exact
eigenvalues (Fig. 1) the convergence of “s’ to the required exact
value has been found to be very fast. More accurate eigenvalues
plotted in Fig. 1 were obtained (numerically) with less than five
iterations in each case.

III. TRANSMISSION PROPERTIES OF THE TE AND
TM MODES WITHIN THE GUIDE

The transmission properties of the guide are governed by a
number of physical quantites. The important parameters are the
attenuation and phase constants («,8) which are defined as the
logarithmic rate of decrease of amplitude and phase, respectively,
of a field component in the direction of propagation. More interest-
ing, however, is the electric field component (which is a more directly
measurable physical unity) and since both Es and E, have the same
functional dependence on ‘r,”” one may define “a’’ and “g” as
follows:

1 oF
=F ==
o + 76 (z,y) 7o (11)
where E denotes either By or E4 for TE or TM modes.
For TE and TM modes [3], one obtains
FTE(x,y) = k(H,/'/Hy — 1/22) (12,
2

and

1 The recurrence relation
sin 8(dPs1/d0) = sPs1t (cos8) — (s + 1) cos OPs! (cos )
has been made use of for obtaining (8a) from (6).
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H,” — 3H,/4x*
M) (13)

F™(zy) = — k
(z,) (Hy/2x T H,

where H, = H,® (x) is the Hankel function of the second kind,
order y.

H, and H,"”" are the first and the second derivatives of the Hankel
function, with respect to the argument y =s -+ 0.5 and z = kr.
The Hankel function H,® (x) and its derivative can be expressed
as complex quantities [5] and the real and imaginary parts of
FTE(zy) and FTM(z,y) give the attenuation and phase constants,
respectively, for the TE to » and TM to » modes.

The phase velocity is defined by

[4] 4

Vp = — = .
B Bk
Caleulation of v, requires a knowledge of the normalized phase con-~
stant (8/k) for an arbitrary flare angle 1° < oy < 180°.
Another parameter of particular interest associated with the mode
transmission is the wave impedance, defined by

14

Z = Ey/H,. (15)
From [3] and (15) one obtains
— 322 H,® () ]
TR o _Jox” 7% 4
Z d/dz{ 2 2H @ (z) ] (16)
; 12 (2)
o $20/dal0H (@) ] -

22H,® (z)
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Based on (14), (16), and (17), a variation of &, 8, v, and Z as a
function of %r with oo as a parameter has been studied and the
results are presented in Figs. 2-5.2 The study reveals that close to
the apex the (reactive) attenuation associated with the mode trans-
mission is large. As “kr’’ increases, “f’’ increases and g8 — k for
kr > 1. Hence one may define somewhat arbitrarily an attenuation
region where 8 < 1 and a transmission where g8 = k. However, no
cutoff radius can be clearly defined. Examination of Fig. 4 reveals
that in the attenuation region the phase angle between E; and Hy
is not equal to 90° as in a cylindrical guide and the phase relationship
is somewhat involved.

In some applications such as the dual-mode conical waveguide
horns it is necessary that the phase slip between the spherical TEy
and TMy; modes be known in order to obtain the required, phase
relationship between the two modes at various radial distances
within the guide. When a TE to r or TM to r mode is transmitted
over a distance “d’’ along a conical waveguide, the total phase shift

over “d” is defined by
a2
A =/ g(x) dx.
ay

In order to obtain the phase shift for the TEy; and TMy; modes as a
function of “d’’ within the conical waveguide, the integral appearing
in (18) was evaluated numerically and the results are presented in
Fig. 6. The phase slip (4 = ATEu — ATM1) between the two modes

(18)

2 Bxplicit expressions for oT%, T, o™ and ™ obtained from (12)

and (13) have been used to calculate and plot the results presented in
Figs. 2-5.
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has also been presented in the same figure for several values of oy.?
It has also been assumed here that the TEy, and TM;; modes are in
phase at a radial distance oy = y, where y is the eigenvalue for the
TMy; mode for a prescribed oy, since given a spherical mode, a
cutoff radius may be approximately defined by kr, = y.

Finally, in order to examine the validity of the analytical pro-
cedure employed to study the transmission characteristics of spheri-
cal TE and TM modes in conical waveguides, measured data on
(8/k) for a cone with o = 6.254° at 10 GHz has been compared
with the computed results in Fig. 7 for the TEy mode. Excellent
agreement between the two justifies the validity of the analysis
presented.

IV. CONCLUSIONS

In conclusion one observes that a detailed study of the transmission
characteristics of spherical TE and TM modes in conical waveguides
is facilitated by accurate computation of eigenvalues. Further, the
digital-computer based iterative procedure proposed for the evalua-
tion of accurate eigenvalues of the spherical waves has been found
to be very fast and highly accurate. Study of transmission charac-
teristics of the spherical TE and TM modes within the guide has
revealed a number of interesting properties. Explicit expressions are
derived for various transmission parameters (attenuation constant,
phase constant, and the wave impedance) associated with the mode
transmission in a conical waveguide. These parameters are dependent
on «a as well as the radial distance kr. A particular mode transmitted
in a conical waveguide has to pass through an attenuation and a
transmission region. The former is confined to the vicinity of the
apex where the induction field predominates. At distances far away
(kr > y) from the apex there is a region of unattenuated transmis-
sion. A study of the phase slip between the spherical TEy; and TMy;
modes transmitted simultaneously in a dual-mode conical waveguide
has also been made. Experimental verification of the computed
results on phase velocity of the spherical modes in conical wave-
guides justifies the validity of the analysis presented.
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31t may be pointed out that the lower limit of the integral (2) is
taken to be au =y (where ‘‘y”’ is the eigenvalue for the TMiu mode)
since one is primarily interested in the relative phase shift between the
dominant spherical TE and TM modes in a dual mode conical wave-
guide. Further, in a dual-mode concial waveguide, the TMu mode is
%fnera,ted by introducing a discontinuity at a radial distance kri = y.
ence it follows that a: = kr1 = y.
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New

Simple Stabilizing Method for Solid-State Microwave
Oscillators

A. KONDO, T. ISHII, anp K. SHIRAHATA

Abstract—In the microwave solid-state oscillators using bulk
effect and avalanche diodes, high dielectric constant ceramics have
been used as a temperature compensator and excellent temperature
stability is obtained. An X-band avalanche diode oscillator is tested
over a wide temperature range. The frequency drift is improved to
be less than 430 kHz/°C. Additional advantages of this technique
are compact size and low cost.

I. INTRODUCTION

A simple means of reducing the noise and stabilizing the solid-
state microwave oscillator is to use a high-Q cavity stabilizer. A
phase lock technique has also been used by means of an injected
signal and a mechanical compensation method which uses a tuning
rod having a large temperature coefficient of expansion in the cavity.
But these methods are fairly troublesome.

In this short paper, simple stabilizing methods using a ceramic
dielectric are described. A ceramic dielectric which has a negative
temperature coefficient is loaded in parallel with the diode package.
The change of the diode and circuit reactance with temperature can
be compensated by the capacitance change of the dielectric. A tem-
perature coefficient less than 430 kHz/°C is obtained in a low-Q
X-band cavity. These methods have merits of simplicity and low
cost. .

II. TEMPERATURE STABILIZATION WITH A DIELECTRIC

The effect of temperature on the diode reactance is due to the
variation of the carrier velocity and the derivative of the ionization
coefficient. These two parameters decrease with the temperature
increase and it results in the increase of diode inductance. The in-
crease of reactance causes the oscillation frequency to shift lower
when the bias current is held constant. The cavity expansion due to
the temperature rise also invites the same results on frequency
characteristics.

If the change of diode and cavity reactance is trimmed with a
ceramic capacitor having negative temperature coefficient, the
oscillator would maintain the same frequency over the operating
temperature range. Some titanium oxide dielectrics have negative
temperature coefficients of capacitance [1]. Fortunately, its dielec-
tric losses are the same order of alumina ceramics which are used
for the microwave diode’s package. In the following, we consider
the circuit parameters to be represented by lumped constants.
Judging from experimental results this assumption is reasonable at
X band.

The oscillation frequency of an avalanche diode oscillator de-
creases almost rectilinearly with the temperature rise. We consider
such an equivalent circuit as Fig. 1. C, is the capacitance of the
diode package and it changes very little with temperature. L, is the
equivalent inductance of the oscillator circuit. G and G. represent
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