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I?ig. 2. Normalized input impedance of the (jxponentialiy tapered
transmission line for various impedance tl amformation ratios (Z2/ZI)
and electrical length (O). The high impedance end of the taper matches
the system impedance (ZZ =21).
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Fig. 3. Enlarged view of a portion of Fig, 2 showing the behavior of the
normalized input impedance for tapers up to several wavelengths long.
The impedance transformation ratio Z2/Z1 == 10.

At an electrical length of approximately 200° the input impedance

becomee real. For longer electrical lengths the impedance follows a

small spiral, becoming real again at one wavelength. Further increase
in length causes the impedance to follow a smaller spiral, and each
additional half-wavelength introduces another even emaller spiral,

the impedance becoming real at each multiple of a half-wavelength.
If it is realized that, for a given physical length of line, the elec-

trical length ie proportional to the frequency, the broad-band proper-

ties of the exponential line become clear. The input impedance re-
maine essentially constant above the frequency at which the taper

length ia appreciably over one-half wavelength. It should be pointed
out that this broad-band characteristic applies to the transformation

of real loads only. However, the behavior of the input impedance as
a function of frequency may be readily determined for any other

load by applying (8)-(13).
The less-well-known narrow-band properties of lhe exponentially

tapered line are also shown in Fig. 2. For example, a transistor whose
input impedance is known Lo be 10 + jl 5 Q requiree a conjugate
matching impedance, normalized to 500 of 0.2 — jO.3. Finding thle
point on Fig. 2 reveals that this impedance is presented by an expo-
nentially tapered line with an impedance transformation ratio of

5:1 and an electrical length of 60°. In this case, the electrical length
@ considerably shorter than a quarter-wavelength. Hence, the

t :pcmentially tapered line is also an attractive vehicle for narrow-
brmd applications that require capacitive impedance transformations
where small physical size is important.

CONCLUS1ONS

Correction and modification of the existing closed form solution for
the reflection coefficient along an exponentially tapered line has
permitted the computation of curves for the input impedance which

are normalized with respect to frequency and ZO. The findings clearly

demonstrate both the broad-band and narrow-band properties of

the tapered line. Use of thenormalized graphs will aidinthedesigu
of exponentially tapered transmission lines for practical applications.
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Transmission Characteristics of Spherical TE and TM

Modes in Conical Waveguides

M. S. NARASIMHAN, MEMBER, IEEE, AND K. S. BALA-

SUBRAMANYA, MEMBER, IEEE

Afrsfrac&-The transmission properties of spherical TE and TM
modes in a perfectly conducting conical waveguide are treated in
detail. To start with, an analytically simple and highly accurate
digital-computer based iterative algorithm has been employed to
evaluate the eigenvalues associated with the spherical TE and TM
modes within the guide irrespective of the flare angle (2ciJ of the

conical waveguide (0 < ZCZO < 3600). Subsequently, explicit expres-

sions for the attenuation constant, phase constant, phase velocity,
and wave impedance are obtained for the spherical modes trans-

mitted within the guide. Accurate eigenvalues obtained numerically

are used to study the variation of attenuation constant, phase con-

stant, phase velocity, and wave impedance as a function of the radial

dlstamc.e from the apex with ao as a parameter. Meaaured data on

the phase constant of a conical waveguide for the TEu mode have

been compared with the analytical results obtained by calculation

and an excellent agreement between the two justifies the validity

of the analysis presented. Finally, a study of the phase coherence

between the dominant spherical TE and TM modes within the guide

is presented which may be fruitfully employed in the design of dual-

mode conical wavegnides.

I. INTRODUCTION

In several microwave systems encountered in such application as
earth stations for satellite communication, microwave radio-relay
links, millimeter-wave communicationfi, and in the launchlng of
Gaussian modes in beam waveguides [1], conical tapers and conical
waveguides are frequently employed. Conical w aveguides and tapers
encountered in the systems just mentioned generate higher order
modes, however small their amplitudes may be. Further, there hae

been considerable interest in the recent pact in techniques which
require controlled excitation of higher order modes combined with

the dominant mode, ae for example dual or multimoding in conical
waveguides. One application of such a multimode waveguide will
be in low-noise antennas for satellite communications [2].

All applications of conical waveguides mentioned previo{lsly
involve generation and transmission of spherical TE and Thf modes

of different orders. Further, a common feature of dual or multi-
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moding techniques in a conical waveguide is the necessity for main-

taining a high degree of phase coherence among the various modes.
In order to design such systems and predict how frequency, tem-
perature, and structural changes influence transmission character-

istics it is necessary to study, in detail, variation of phase conStant,
attenuation constant, and wave impedance for different modes with

radial distance in the conical waveguide.
In this short paper, to begin with, anovel method is devised for

accurate evaluation of theeigenvalues associated with thepropagat-

ing ~E and TM modes in a conical waveguide which are subse-
quently used to study the transmission properties of the guide.
Finally, a study of phase coherence between the TE,l and TMII
modes in a dual-mode conical waveguide has also been presented.

II. EIGENVALUES OF SPHERICAL TE AND TM MODES
WITHIN THE GUIDE

Theelectromagnetic field components (of iuterest inthe study of

transmission characteristics) in a perfectly conducting waveguide

of infinite extent are well known [3]. The eigenvalues associated

with the field components are given by the nth nonvanishing root of

the characteristics equations:

d/dt? – [P.n(cos@]o=a. = O, for TE*,n modes (1)

[Psfi(cose)]@=ao =0, for TM~,n modes. (2)

As mentioned previously, a systematic and detailed studyof the

transmission properties of spherical modes in conical waveguides
requires’the exact evaluation of the eigenvalues associated with the
type of mode under consideration. An analytically simple and highly
accurate digital-computer based iterative algorithm is described
here for evaluating the exact eigenvalues. The technique described

involves closed-form evaluation of the eigenvalues, based on an
accurate asymptotic solution forspherical wave functions associated

with modes in a conical waveguide. The eigenvalues obtained from

the asymptotic solution are close to the exact values for all flare

angles 1 <ao <180”. Hence the asymptotic solution is used to
generate the starting values for numerical evaluation of the more
exact eigenvalues with simple iterative process.

Au analytically simple and sufficiently accurate asymptotic solu-
tion for the i-eqtiired eigenvalues is obtained by considering the
differential equation governing the H(@) part of thesolution for the
scalar potential ua,~~iven as follows [3]:

1

[1

g sin O~ +.s(.s+l)-~O=O
H sin O do

(3)

where, forl COS6’I < 1,

H =Ap,m(cos l?) +~~8m(COSL9). (3a)

Theasymptotic solution F(8) corresponding to l+(d) ie obtained by

replacing sind by 6 in (3) and solving the resulting differential
equation as detailed in [4]:

F (tI) = C[Jm (@) + ~Nm (@)1 (4)
where

q = [s(s + 1)]1/2
and

S = — 0.5 + [0.25 + (P~m)aO)2]1/2. (5)

In (5) “pm.” and “D” depehd on the type of radial waveguides con-

sidered. For example, in a conical waveguide, D = O and p~n repre-
sents the nth nonvanishlng root of Jm’ (z) = O, when TE to r modes
are considered. Similarly, for TM to r modes, “pm.” stands for the
nth nonvanishing root of J~ (r) = O. Since the roots of the Bessel
functions of the first kind (integral order) and its derivative are
readily available [5], “s” can be directly computed from (5). The
eigenvalues obtained using (5) for an arbitrary flare 1 < ao < 180°
(for the TEI. or TM,. modes) are found to be close to the exact
eigenvalue. In order to obtain the exact eigenvalues an iterative

procedure is developed by considering the integral representation

for the associated Legendre functions [6]:

()(sin 6) a 2 ‘/z

“m(cos 6) = ‘–l)m (?n + 0.5) ;
II (S, f?) (6)

~,(8,@)= (s +rn +1) ‘

/(S–?n+l) ~
(COS X – COS f3)m46 COS [Z (S + 0.5)] dz.

(7)

For the TEln and TMln modes the eigenvalue equations (1) and (2)

may be reduced to the following formsl with the aid of (6) :

G, (s,cYo) = d(s + l,ao) – (s + 1) cos aOI (s,aO) = O (8a)

GZ(S,aO) = I (S,qy) = O (8b)

where

I(S,CTO) = 5(S + 1)
J

“0 (COS z – COScr,)]/’ COS[X(S + 0.5)] dx

o

.@+,,=,.+,) _ G~(@)@O)
G/ (S@),aO)

(9)

where i = 1,2 for TEln and TMl~ modes, respectively,

G,’ (S,cr,)= d’ (S + l,&O) – (S + 1) COSa,~’ (S,a~)

+ 1(s + l,cro) - Cos CMJ(S,CYO) (lOa)

Gz’ (s,(M) = ~’ (S,CYO) (lOb)

and

I’(s,clo) = (2 – s + 1)
/

a“ (COS X – COSa,)liz COS[Z(S + 0.5)] dx

o.

/
– S(s +1) “0Z(COS z — cos CXO)112sin [Z(S + 0.5)] dx.

o

In (9), .@+l) represents the (k + 1) th value of “s” evaluated after

k successive iterations and the known asymptotic solution for “s”

given by (5) is taken as the starting value “s.”
IBM 370/155 computer system was made use of for performing

the successive iterations. The integrals I (s,a~) and 1’ (s,cq) were
evaluated numerically using a 24 point Gaussian quadrature formula
in a subprogram forming a part of the computer program meant for

evaluating “s.) 1 Double-precision arithmetic was used throughout
in order to obtain an accuracy of 10–6 while computing “.s.” The

truncation error involved in the evaluation of the integrals Z (s,aO)
and I’ (S,ao) are of the same order and is hence eliminated completely

as they appear se a ratio in evaluating the eigenvalue (9). Further,
since the starting values “s” (given by (5) are close to the exact
eigenvalues (Fig. 1) the convergence of “s” to the required exact

value has been found to be very fast. More accurate eigenvalues

plotted in Fig. 1 were obtained (numerically) with lees than five
iterations in each case.

III. TRANSMISSION PROPERTIES OF THE TE AND
TM MODES WITHIN THE GUIDE

The transmission properties of the guide are governed by a
number of physical quantites. The important parameters are the
attenuation and phase constants (d, L?) which are defined as the
logarithmic rate of decrease of aihplitude and phase, respectively,

of a field component in the direction of propagation. More interest-
ing, however, is the electric field component (which is a more directly

measurable physical unity) and since both Eo and E$ have the same
functional dependence on “r,” one may define “~” and “~” IXS
follows :

a+ J3=F’(q/) = —g (11)

where E denotes either EP or E$ for TE or TM modes.
For TE and TM modes [3], one obtains

FTE (X, f/) = k (HU’/H~ – l/2x) (12~7

and
e

1 The recurrence relation

sin @(dP81/dO) = SP.+ll (COS0) – (s + 1 ) cos 8P. I (COS0)

has been made use of for obtaining (8a) from (6).where
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where Hv = H~@ (z) is the Hankel function of the second kind,
order y.

H.’ and H.” are the first and the second derivatives of the Hankel
function, with respect to the argument y = s + 0.5 and z = ?w.

The Hankel function H.(z) (z) and its derivative can be expressed

as complex quantities [5] and the real and imaginary parts of
W32 (z)y) and FTM (zjy) give the attenuation and phase constants,
respectively, for the TE to r and TM to r modes.

The phase velocity is defined by

(14)

Calculation of v, requires a knowledge of the normalized phase con-

stant (@/k) for an arbitrary flare angle 1“ < ai3 < 180°.
Another parameter of particular interest associated with the mode

transmission is the wave impedance, defined by

Z = Eo/Hd. (15)

From [3] and (15) one obtains

ZTE =
–jz,[#2HU@ (z)]

d/CZZ[Z’j2HU@J (z)]

z~~ = jZ,d/dx[x’/2Hv@) (X)]

@/2~u(2) (z) .

Fig. 1. Variation cf eigenvalue for the TE and TM modes with m.

(16)

(17)

(d)

Based on (14), (16), and (17), a variation of a, & VP, and Z as a
function of b with ~0 ns a parameter hss been studied and the
results sre presented in Figs. 2-5.2 The study reveals that close to
the apex the (reactive) attenuation associated with the mode trans-
mission is large. AS “kr” incresses, ‘ ‘IY’ increases and 6 -+ ~ for
lcr >>1. Hence one may define somewhat arbitrarily an attenuation
region where D << 1 and a transmission where @= ,%.However, no
cutoff radius can be clearly defined. Examination of Fig. 4 reveals
that in the attenuation region the phase angle between E,q and H+

is not equal to 90° as in a cylindrical guide and the phase relationship
is somewhat involved.

In some applications such as the dual-mode conical waveguide
horns it is necessary that the phase slip between the spherical TEn
and TMII modes be known in order to obtain the required, phase

relationship bet ween the two modes at various radial dktances
within the guide. When a TE to r or TM to r mode is transmitted

over a distance “d” along a conical waveguide, the total phase shift

over “d” is defined by

!

!X2

A= /3 (Z) dz. (18)
al

In order to obtain the phase shift for the TMI and TMu modes as a

function of “d” within the conical waveguide, the integral appearing
in (18) WRS evaluated numerically and the results are presented in
Fig. 6. The phsse slip (Al = ATE” – ATM”) between the two modes

2 Explicit expressions for aTE, (3TE, aTM, and @TM obtained from (12)
and (13 ) have been used to calculate and plot the results presented in
Figs. 2-5.
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Fig. 7. Comparison of calculated and measured values for @/k for the
TEu mode.

has also been presented in thesame figure for several values of a0.3
It has also been assumed here that the TEII and TMII modes are in
phase at aradial distanceal = y, where yistheeigenvalue for the
TMII mode for a prescribed aO, since given a spherical mode, a

cutoff radius maybe approximately defined bykrc fi y.

Finally, in order to examine the validity of the analytical pro-
cedureemployed to study the transmission characteristics of spheri-
cal TE and TM modes in conical waveguides, measured data on

(6/k) for aconewithaO =6.254” at 10 GHzhss been compared
with the computed results in Fig. 7 for the TEII mode. Excellent
agreement between the two justifies the validity of the analysis

presented.

IV. CONCLUSIONS

In conclusion one observes that a detailed study of the transmission
characteristics of spherical TE and TM modesin conical waveguides
is facilitated by accurate computation of eigenvalues. Further, the
digital-computer based iterative procedure proposed for the evalua-

tion of accurate eigenvalues of the spherical waves has been found
to be very fast and highly accurate. Study of transmission charac-

teristics of the spherical TE and TM modes within the guide has

revealed a number of interesting properties. Explicit expressions are
derived for various transmission parameters (attenuation constant,
phase constant, andthewave impedance) associated with the mode

transmission in a conical waveguide. These parameters are dependent
ona~ sswellas theradial distancekr. Aparticular mode transmitted
in a conical waveguide has to pass through an attenuation and a
transmission region. The former is confined to the vicinity of the
apex where the induction field predominates. At distances far away
(kr ~y) from theapex there isa region of unattenuated transmit-

sion. Astudyof the phase slip between the spherical TE1l and Ti%
modes transmitted simultaneously in a dual-mode conical waveguide
has afeo been made. Experimental verification of the computed

results on phase velocity of the spherical modes in conical wave-

guides justifies the validity of the analysis presented.
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Simple Stabilizing Method for Solid-State Microwave

Oscillators

A. KONDO, T. ISHII, AND K. SHIRAHATA

Absfracf—In the microwave solid-state oscillators using bulk

effect and avalanche diodes, high dielectric constant ceramics have
been used as a temperature compensator and excellent temperature
stability is obtained. An X-band avalanche diode oscillator is tested
over a wide temperature range. The frequency drift is improved to
be less than +3o kHzflC. Additional advantages of this technique

are compact size and low cost.

I. INTRODUCTION

A simple means of reducing the noise and stabilizing the solid-

state microwave oscillator is to use a high-Q cavity stabilizer. A
phase lock technique has also been used by means of an injected
signal and a mechanical compensation method which uses a tuning
rod having a large temperature coefficient of expansion in the cavity.
But these methods are fairly troublesome.

In this short paper, simple stabilizing methods using a ceramic
dielectric are described. A ceramic dielectric which has a negative
temperature coefficient is loaded in parallel with the diode package.
The change of the diode and circuit reactance with temperature can

be compensated by the capacitance change of the dielectric. A tem-

perature coefficient less than +30 kHz~C is obtained in a 1ow-Q

X-band cavity. These methods have merits of simplicity and low

cost.

II. TEMPERATURE STABILIZATION WITH A DIELECTRIC

The effect of temperature on the diode reactance is due to the

variation of the carrier velocity and the derivative of the ionization
coefficient. These two parameters decrease with the temperature
increase and it results in the increase of diode inductance. The in-
crease of reactance causes the oscillation frequency to shtit lower
when the bias current is held constant. The cavity expansion due to

the temperature rise also invites the same results on frequency
characteristics.

If the change of diode and cavity reactance is trimmed with a

ceramic capacitor having negative temperature coefficient, the
oscillator would maintain the same frequency over the operating
temperature range. Some titanium oxide dielectrics have negative
temperature coefficients of capacitance [1]. Fortunately, its diele~
tric losses are the same order of alumina ceramics which are used
for the microwave diode’s package. In the following, we consider

the circuit parameters to be represented by hnnped constants.
Judging from experimental results this assumption is reasonable at
X band.

The oscillation frequency of an avalanche diode oscillator de-

creases ahnost rectilinearly with the temperature rise. We consider
such an equivalent circuit as Fig. 1. C= is the capacitance of the
diode package and it changw very little with temperature. L, is the

equivalent inductance of the oscillator circuit. G and G, represent
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